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Abstract— Controlling the shape of deformable linear objects
using robots and constraints provided by environmental fixtures
has diverse industrial applications. In order to establish robust
contacts with these fixtures, accurate estimation of the contact
state is essential for preventing and rectifying potential anoma-
lies. However, this task is challenging due to the small sizes of
fixtures, the requirement for real-time performances, and the
infinite degrees of freedom of the deformable linear objects. In
this paper, we propose a real-time approach for estimating both
contact establishment and subsequent changes by leveraging
the dependency between the applied and detected contact force
on the deformable linear objects. We seamlessly integrate this
method into the robot control loop and achieve an adaptive
shape control framework which avoids, detects and corrects
anomalies automatically. Real-world experiments validate the
robustness and effectiveness of our contact estimation approach
across various scenarios, significantly increasing the success rate
of shape control processes.

I. INTRODUCTION

Controlling the shape of deformable linear objects (DLOs)
with robot manipulators has a wide range of industrial appli-
cations, such as cable routing [1], wire-harness assembly in
manufacturing [2], or manipulation of endoscopes in robotic
surgeries [3]. These shape control tasks pose a significant
challenge due to the inherent mismatch between the finite
constraints that can be imposed on DLOs by manipulators
and the infinite degrees of freedom DLOs possess [4]. In
tackling this challenge and striving to achieve complex
shapes, additional constraints are required, typically provided
by contacts from environmental fixtures [1], [5]–[9]. To
safely fasten DLOs using fixtures, reliable contact state esti-
mation is crucial for prevention of potential anomalies such
as misalignment or insufficient pushing, and for enhancing
the overall robustness of the shape control system.

Taking typical fixtures widely used in wire-harness as-
sembly as an example, different fixtures are designed to
provide different types of contact for DLOs. For pillar-
like fixtures [5] or channel-like fixtures [7], contact states
are simply binary, only indicating whether contact has been
established or not. In contrast, due to their own deformations,
clip-like fixtures depicted in Fig 1 introduce a dynamic and
more complex contact process: as the DLO advances towards
the clip, it initially makes contact with the clip’s opening.
Subsequently, as the DLO is pushed inward, the clip is forced
to open to let the object in. Once the object is securely
fastened inside the clip, the contact is detached, unless the
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Fig. 1: Setup. Top: shape control of DLO with 4 environmen-
tal fixtures using two robots. Bottom: various clip fixtures
and their sizes (Length x Height (cm)).

object moves further and collides with the rear part of the
clip (see Fig 2). Despite the brevity of this process in terms of
time and displacement, the contact force undergoes multiple
distinct stages of change, notably featuring an instantaneous
and abrupt drop at the moment of insertion. Similar contact
patterns can also be observed during suturing or tissue
retraction of minimally invasive surgery [10], when a surgical
tool pierces from one type of tissue to another.

While contact estimation seems to be an intuitive task for
humans due to their superior tactile sense, it is challenging
when performed by robots. Existing contact estimation ap-
proaches typically rely on visual perception or robot motion
information. However, they are not reliable to be applied
to contacts in clip fixing scenarios. Firstly, the small size
of fixtures and the resulting limited displacements of robots
during clip fixing hinders the effectiveness of vision-based
methods. On the one hand, it demands highly precise object
segmentation and tracking. On the other hand, it imposes
strict real-time requirements for contact estimation, requiring
computations to match the robot control loop frequency. As a
result, visual perception algorithms used in prior works [5]–
[7] are not practical due to their dependence on slower image
processing. Secondly, the contact is established not with the
robot but with the DLO itself, which makes direct contact
measurement impossible [5]. In cases involving rigid objects
or direct contact between robots and fixtures, contact interac-
tions can be characterized easily by robot displacement [11]:
the displacement of the robot will pause temporarily upon
blockages, and only resumes once the object is inserted in.
However, in the case of a DLO, its contact state lags behind
the robot motion due to the deformation. For example, in
Fig 2(a), despite that we have stretched the grasped DLO
to be tense, noticeable deformation still exists, and the two
robots may continue advancing even when DLO is still



(a) (b)
Fig. 2: Clip fixing and DLO deformation. (a) Top views.
From top to bottom: contact-insertion-fixed-overforce move-
ment. (b) Left views. Top: insertion; bottom: fixed.

blocked. In short, vision-based and motion-based approaches
are rendered impractical, which motivates us to seek a more
efficient and robust approach for contact estimation.

Inspired by the pivotal role of tactile information in human
perception of deformable objects, and considering its effort-
less acquisition by robot sensors within each control loop, we
present a real-time method based on contact forces that can
accurately estimate contact state of DLOs subject to various
environmental constraints. Through an in-depth analysis of
contact characteristics exhibited by fixtures as well as their
interaction with DLO, we design two indicators for robust
contact state estimation. Subsequently, we integrate these
indicators into the clip fixing skill developed in our prior
work [1], and realize a self-adjusting DLO shape control
framework. This framework shows the capability to dynam-
ically adapt to varying contact scenarios. The contributions
of this work are summarized as follows.
• Based on the dependency between the applied and the

detected contact force, we propose a contact establish-
ment indicator and a contact change indicator. These
two indicators describe the initial establishment and
the following change of DLO’s contact against fixtures
robustly across various settings.

• Through these indicators, we develop a contact state
estimation method which could run in real time in 1 kHz
control loop and accurately detect potential anomalies
in the shape control process.

• We integrate the contact state estimation method into the
DLO shape control framework of two robotic manipula-
tors, which dynamically adjusts its parameters in case of
anomalies. Real-world experiments have validated the
improvements in performance of DLO shape control
process with fixtures after this integration.

II. RELATED WORK

The utilization of environmental fixtures to control the
shape of DLOs was first introduced by Zhu et al. [5]. Since
then, there has been a widespread adoption of this approach
in DLO manipulation [1], [4], [6]–[9]. A crucial step in
this process is estimating the contact status of the DLO
constrained by fixtures. Existing research in contact state
estimation for deformable objects often focuses on construct-
ing a contact distribution, encompassing both position and
magnitude of contact forces. This distribution could be built
and updated online during the manipulation, for example,

by biomechanical mapping based on 3D reconstruction from
stereo endoscopic images of an organ [3], or volumetric
stiffness field modeling when touching artificial plants [11].
Alternatively, it can be generated by neural networks trained
on a combination of visual, tactile, and robot movement data
beforehand [12]–[14].

However, when dealing with DLO manipulation using fix-
tures, constructing a complete contact distribution becomes
impractical for several reasons. Unlike direct tactile sensing,
in DLO manipulation, the contact force acts on the DLO
itself, making precise measurement challenging [5]. Further-
more, traditional distance threshold-based contact detection
methods used in prior research [3], [11] are less robust
due to the dynamic deformations exhibited by the DLO
during manipulation. Finally, DLO manipulation primarily
involves contact with only a small segment of the DLO,
which makes focusing on contact points more suitable than
creating a contact distribution. Therefore, previous works in
manipulation of DLOs tend to adopt more intuitive and com-
putationally efficient criteria to estimate the contact states,
either by detecting the contact establishment and resulting
shape changes from top images [4]–[8], or by detecting the
contact position from force measurements [1], [9].

Following this idea, our paper introduces two straightfor-
ward yet effective indicators for estimating DLO’s contact
state during their shape control process with environmental
fixtures. These indicators not only detect contact establish-
ment but also identify changes afterwards in multi-stage
contact processes.

III. PROBLEM FORMULATION

A. Clip Fixing Process
We formulate the clip fixing process based on the clip-

fixing skill introduced in our prior work [1]. As is shown
in Fig 3(a), the movement of robots as well as the cable is
described in an object-centered coordinate frame: the x-axis
corresponds to the tangential direction of the cable, the y-axis
represents the insertion direction of the clip, and the z-axis
indicates the opening (actuation) direction of the clip.

As illustrated in Fig 3, the clip fixing process is defined as
a directed transition graph of manipulation primitives (MPs).
Each MP consists of a desired linear velocity ẋd ∈ R3 and
feedforward force f ∈ R3, both controlled under an adaptive
impedance controller [15]. Initially, both robots securely
grasp each end of a DLO segment. As two robot exert
forces fstretch = [± fstretch,0,0]T in the opposite direction,
the segment is stretched until it becomes tense (Fig.3(a)).
This stretching force is maintained throughout the subsequent
stages. Following this, robots guide the segment to move
along y-axis (ẋd = [0,1,0]T ) to establish contact with the clip
(Fig.3(b)). Upon contact detection, robots insert the segment
into the clip by applying a pushing force fpush = [0, fpush,0]T
(Fig.3(c)). Once the DLO segment is fully inserted, the
robots cease applying forces and further motion (Fig.3(d)).

Although experiments in [1] have substantiated the effec-
tiveness and advantages of the clip-fixing skill above for
controlling and maintaining the DLO’s shape, there exists
some issues which may diminish the framework’s robustness:
• Missed contact (Fig 3(e)). If the grasped DLO passes

over the clip opening, no contact is established between
the object and the clip. Consequently, the DLO contin-
ues to move forward alongside the clip.
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Fig. 3: Clip fixing process. The red curve represents the DLO. The black fixture represents the clip. The gray polygon
represents the robot hand and finger tips. (a), (b), (c) and (d) in the first row describe the ideal clip fixing process. (e),
(f), (g) in the second row describe the failures which may happen at different stages. The tendency of displacement (green
curve) and contact force (blue curve) are depicted next to each failure. For simplicity, the hand is omitted in the second row.

• Entry blockage (Fig 3(f)). If the grasped DLO moves
below the clip opening, it will be blocked by the fixture
base. Contact is maintained once established until the
skill exits. Similar phenomenons can be observed if
fpush is inadequate to overcome the clip’s elastic force.

• Overforce movement (Fig 3(g)). Excessive applied
force fpush or a delay in force removal after insertion can
cause the DLO to continue moving forward, eventually
colliding with the clip’s rear end. In extreme cases, this
may result in damage.

We notice that these anomalies happen at different stages
of the clip fixing process with different contact patterns, and
can be detected and avoided by accurate estimation of DLO’s
current contact state with the clip.

B. Contact with Clip

In contrast to static pillar or channel fixtures, the clip
fixture exhibits elastic deformation when subjected to a force
at its opening. Consequently, the contact force exerted by
the clip fixture is expected to be dynamic, multi-stage, and
anisotropic. To gain a deeper insight into the contact patterns,
we study force interactions with the clip.

The initial state of the clip is shown in Fig 4(a). When
a force f is applied to push an object into the clip, the clip
performs deformation ∆h(t) and thus applies an elastic force
fd(t) on the object (Fig 4(b)). For simplicity, we assume
that the clip opening possesses a constant stiffness denoted
as Kclip and there exists a quasi-linear mapping P from the
object’s displacement x(t) to deformation h(t). In this case,
the elastic force can be formulated as

fd(t) = Kclip ·∆h(t) = Kclip ·∆P(x(t)). (1)

When the magnitude of f is sufficiently large, the object is
inserted into the clip and the contact is detached, causing
both h(t) and fd to become zero (Fig 4(c)). The change of the
magnitude of elastic force fd to displacement in this process
is visualized in Fig 4(d). In the pushing process, the elastic
force initially increases, then experiences an abrupt drop to
zero, and finally remains there until the skill terminates.

We then study the contact force applied on the object by
the clip. Apart from fd, the object also experiences a support
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Fig. 4: Clip dynamics (a) before, (b) during, and (c) after
insertion. (d) The change of contact force in this process.

force from the fixture bottom fb as well as two friction forces
fbr and fdr. The total contact force applied on the object by
the clip is thus a sum fc = fd + fdr + fb + fbr. Consider only
the components in y direction, we have

f y
c = fd · (2µ · cosψ +(1−µ

2) · sinψ). (2)

Note that in the following sections, we adopt the same con-
vention that bold variables (e.g., v) represent vectors, while
their scalar counterparts (e.g., v) denote their magnitude. ψ is
the angle and µ is the coefficient of friction. In the clip fixing
process, the change in ψ is small and can be neglected. Thus,
we can conclude that the contact force applied on the object
f y
c is approximately linear to fd and experiences a similar

change pattern to that described in Fig 4(d). This allows us to
estimate the contact establishment and detachment between
the object and the clip by detecting the rising and falling
pattern of the contact force.

IV. CONTACT ESTIMATION

In this section, we study force interactions between the
grasped DLO and the clip in contact and insertion stage.
Through analyzing the dependency between the applied
and detected forces, we define two indicators to estimate
contact establishment and following changes. Two significant
modifications are introduced to the clip-fixing skill outlined
in Section III-A:

1) We redefine every single MP to consist solely of a
desired feedforward force f, without controlling linear
velocity ẋd . Especially in the contact MP, the object is
guided by a pushing force to approach the clip after
this modification.



Robotics, Artificial Intelligence and Real‐Time Systems ▪ Department of Computer Science ▪ Technical University of Munich

14.09.2023 37Contact: Kejia Chen (kejia.chen@tum.de) 37

(b)

fpush

fstretch

fc

θ

(a)

fpush

fstretch

fc

θ

in
se

rt
io

n
C

C
I

C
E

I

Fig. 5: Top view of cable dynamics in contact with the clip
(a) from stretching to contact establishment, and (b) from
contact establishment to fixed-in. The clip is represented by
the black block in the center. The black arrow on the left
describes insertion direction.

2) In the insertion MP, instead of applying a constant
pushing force, fpush rises gradually from zero

fpush(0) = 0 and
d fpush(t)

dt
> 0. (3)

This modification extends the interaction period be-
tween the DLO and the clip, resulting in a smoother
and longer interaction.

With the modifications above, in all MPs following stretch-
ing, the grasped DLO is stretched by fstretch and at the same
time pushed by fpush into the clip, as shown in Fig 5. Once
it establishes contact with the clip, it is also under contact
force fc. Taking all the external forces applied on the grasped
DLO into account, the general dynamics of the DLO can be
described as

m · ẍ(t) = fstretch + fpush− fc(t). (4)

Since the DLO is stretched at both ends to be tense before-
hand, the contribution of fstretch to the acceleration ẍ can
be ignored. We consider only the components in y direction
in (4):

m · ẍ(t) = fpush− fc(t). (5)

In essence, (5) can be conceptualized as a system that takes
fpush as input and generates outputs in the form of ẍ and
fc. We define a contact establishment indicator (CEI) and a
contact change indicator (CCI) to estimate the initial contact
establishment and following contact changes respectively by
analyzing the interrelationship between the input and output.

A. Contact Change Indicator (CCI)
As shown in Fig 5(a), the insertion MP describes the pro-

cess after the DLO has contacted the clip until it is inserted
in and the contact terminates. Inspired by the definition of
stiffness (ratio of the resulting deformation to the applied
force), we define an indicator for describing the contact
change in this process as the rate of change of the resulting
contact force to the feedforward force:

ρc =
d fc

d fpush
. (6)

To establish a robust relationship between fc and fpush,
we set two prerequisites for the insertion MP. Firstly, the
grasped DLO is stretched to be tense and already in a solid
contact with the clip. Thus, the deformation of DLO can
be neglected, i.e., θ is almost a constant. In addition, after
the contact MP, robots are forced to pause moving until the
velocity is close to zero before the insertion MP starts. By
combining these prerequisites with the second modification
we introduced before, we ensure that at each time point
between establishing contact and being inserted into the
clip, the DLO can be approximated as quasi-static and the
acceleration could be neglected so that ρc ≈ 1.

As fpush(t) rises, an abrupt drop in ρc occurs at the
moment when the DLO is inserted into the clip and the
contact disappears that fc ≈ 0. To capture this moment, we
make prediction of ρc in the future: at each time point t, we
consider ρc(t) as a random variable following a Gaussian
distribution

ρc(t)∼N (µt−1, σ
2
t−1), (7)

where µt−1 and σt−1 represent the cumulative average
and standard deviation until time step t − 1, respectively.
When the contact remains stable, ρc(t) should conform to
our prediction. The instant of a contact change, whether
a termination or a new establishment, is detected when
ρc(t) deviates from the prediction, i.e., when it falls outside
a confidence interval (CI) specified by the Z-score. The
condition for contact detachment is formulated as:

ρc(t)< µt−1−Z ·σt−1. (8)

Similarly, the re-establishment condition is formulated as:

ρc(t)> µt−1 +Z ·σt−1. (9)

Capturing contact change using CCI offers a distinct
advantage in terms of adaptability when compared to relying
on a constant contact force threshold Fc. This adaptability
enables CCI to be effectively employed with clips of various
size or materials. Furthermore, due to its independence from
the specific rising pattern of fpush(t), ρc outperforms the
contact force change rate d fc

dt which is also differential-based.
These advantages will be evaluated later in Section VI-A.

B. Contact Establishment Indicator (CEI)

Given the first prerequisite of the insertion MP that θ

should be quasi-static, we define an indicator for describing
whether there is a solid contact established between the clip
and the DLO in the contact MP. This contact establishment
indicator, denoted as ρe, is defined as the ratio of the contact
force to the feedforward force:

ρe =
fc

fpush
. (10)

In theory, the moment when contact is established can be
detected by simply measuring whether fc > 0. In practice,
however, the contact force detected by robots f ext

c (t) is
usually non-zero as it includes additionally some noise
and especially measurement error arising from acceleration
f ext
c (t) = fc(t) +me · ẍ(t), as is shown in Fig 5(b). Before

any contact is established, the acceleration ẍ(t) = fpush
m is

relatively high and thus the measurement error cannot be
ignored. This leads to the modified form of (5):

(m+me) · ẍ(t) = fpush− fc(t). (11)



Algorithm 1 EnhancedShapeControl (Ψ = {ψi})
1: Initialize (St ,xh, fext)
2: for ψi ∈Ψ do
3: if xh ≈ ψi then ▷ Start Clip Fixing Iteration
4: while ζt ̸= ζ ∗ do
5: Initialize ζt = [0]
6: Sample xz

h and Fpush
7: while not ExitCondition do
8: fext

c = MP(xh, fpush)
9: ρE ,ρT =ContactIndicator(fext

c , fpush,E,Z)
10: ζt←ContactStateTransiton(ρE ,ρT )
11: if ζt = ζ ∗ then
12: break
13: xz

h,Fpush = ResampleParam(ζ ∗−ζt)

14: else ▷ Start Shape Tracking Skill
15: xh← ShapeTracking(St ,ψi,xh)

We assume that fpush remains constant during this stage and
is smaller than the maximum contact force provided by the
clip deformation:

d fpush

dt
= 0 and fpush < max fc(t). (12)

As the deformation of the clip grows, both fc(t) and CEI
rises. The second-order differential system in (11) will even-
tually reach an equilibrium point where fc(t) = fpush and
ρe = 1. This marks the moment when θ becomes stable and
can be considered as the establishment of a solid contact. In
practice, we formulate the contact establishment condition
with a threshold E that ρe > E.

V. ENHANCED SHAPE CONTROL

Based on CEI and CCI, the ideal clip fixing process as
well as anomalies introduced in subsection III-A can be char-
acterized by the contact force pattern, more specifically, as
sequences of contact establishment and detachment, denoted
as ζ . We define the initial contact state after stretching as
0. For an ideal clip fixing process, upon the first contact
establishment detected by CEI, the contact state turns to
1. After that, once the contact detachment is detected by
CCI using (8), the contact state turns to 0 and the process
terminates with the resulting contact state sequence ζ ∗ =
[0,1,0]. Otherwise, the skill is forced to exit if it reaches
a time or displacement limit. Especially in an overforce
movement case, the re-establishment of contact with the rear
part of the clip is detected by CCI using (9) and the contact
state turns again to 1. The contact state sequences of each
MP and anomaly is depicted in Fig 3.

We then combine the improved clip fixing skill with the
shape tracking skill developed in our prior work [1] to
form an enhanced adaptive shape control framework which
could detect and correct anomalies automatically based on
feedback provided by contact sequences. The two robots
collaborate in a “master-slave” mode. The master holds one
end of the DLO for the whole process, the pose of which
is denoted as xh, and the follower only comes to grasp
the DLO when clip-fixing skill starts. The shape of DLO
St is obtained from visual perception. The shape control
skill plans motion of both robots to each fixture while
avoiding collision between robots and with fixtures Ψ =
{ψi}. Arriving at one fixture ψi, the clip fixing skill starts
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Fig. 6: Various settings for comparing contact change detec-
tion. (a) Different growing patterns of the fpush(t). (b) Cables
with different radius.

and runs in iterations. In the first iteration, MP parameters
are sampled randomly from respective uniform distributions.
For simplicity, we parameterize xh with its z component xz

h,
and fpush(t) with the maximum force Fpush it could reach
within a certain period Tpush. After each iteration, in case
when anomalies are detected, the upper and lower ranges
of the parameter distributions are updated respectively based
on the anomaly type, i.e., based on the difference between
ζt and ζ ∗, and MP parameters (xz

h and Fpush) are sampled
again from the updated distribution. This process is repeated
until ζ ∗ is detected. Afterwards, the robots move to the next
fixture. The shape control framework enhanced with real-
time contact estimation is summarized in Algorithm 1.

VI. EXPERIMENTS

In this section, we present real-world experiments to
evaluate the accuracy of the proposed contact estimation
approach and improvements it brings to the DLO shape
control process. As shown in Fig. 1, we use two 7 DOF
Franka Emika Panda robots for the experiments, both of
which are equipped with joint torque sensors and provide 6-
axis force torque estimation at the end-effectors. Throughout
this process, all the fixtures remain anchored to the desk,
maintaining constant poses.

A. Evaluation of Contact Change Detection
We evaluate the performance of CCI in comparison to

two other intuitive indicators for contact change detection,
namely, a constant contact threshold Fc and the contact force
change rate d fc

dt , across various setups. The detected contact
force is smoothened using a Bartlett window of length 50 ms
in real time. We choose the 99.5% confidence interval with
Z = 2.807 for both d fc

dt and ρc. In the insertion MP, fpush
applies for a duration of Tpush = 3000 ms until Fpush = 20 N.

Across different rising Firstly, we compare performances
under three different growing patterns of fpush(t), each
approximating a linear function, a logarithm function and
a exponential function, as shown in Fig 6(a).

We collect contact data by performing overforce move-
ment with every growing pattern in Fig 6(a) at three different
fixture poses depicted in Fig 1, namely, P1, P2, and P3, with
each setting repeated for 10 times. The number of successful
contact change detection using each indicator is summarized
in Table I. Overall, ρc achieves equal or higher success rate
across different rising patterns.

We also look into one trial with exponential rising where
d fc
dt fails to detect the contact change instant. As shown in

Fig 7(a), d fc
dt in this case becomes very fluctuating and is

unable to reveal the contact change clearly. In contrast, CCI
is able to capture the contact termination accurately at 297
ms (dashed vertical line) as well as the new establishment at
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TABLE I: Contact change detection accuracy I.

Fc d fc/dt ρc (ours)
P1 P2 P3 P1 P2 P3 P1 P2 P3

linear 10 10 9 10 10 9 10 10 9
log 10 10 9 10 10 5 10 10 9
exp 10 1 4 9 1 2 10 10 5
success 1.0 0.7 0.73 0.96 0.7 0.53 1.0 1.0 0.83

392 ms (dashdotted vertical line), as is shown in Fig 7(b).
The moments when ρc exceeds the confidence interval are
clearly observable.

Across different cables and clips Furthermore, we
compare their performance on cables with different radius
(Fig 6(b)) and clips of different sizes and opening directions
(Fig 1). The number of successful contact change detection
using each indicator is listed in Table II. We can observe that
when the DLO radius is much larger than the opening of the
clip, all three indices achieve high success rate. As the radius
becomes smaller and the contact change turns less obvious,
e.g. in the case of cable S with clip C1, ρc preserves the
most robust performance. In an extreme case where the cable
radius is almost the same as the clip opening (S with U1),
the contact force is too low to be detected by any indicator.

TABLE II: Contact change detection accuracy II.

Fc d fc/dt ρc (ours)
C1 C2 U1 C1 C2 U1 C1 C2 U1

L 10 0 10 10 10 10 10 10 10
M 10 0 10 10 10 10 10 10 10
S 4 0 0 4 0 0 10 10 0
success 0.48 0.71 0.88

B. Evaluation of Enhanced Shape Control
Finally, we evaluate the improvements our contact es-

timation approach brings to the shape control framework
by comparing the success rate with and without contact
estimation integrated. As is shown in Fig 1, four fixtures
of three different types are mounted securely on the harness
board. Each fixture is designed to have a slightly different
offset δz in its z axis. These offsets are hard to be detected by
visual observations but may lead to an anomaly in clip fixing.
The framework is aware of the clips’ opening direction and
originally assumes that all the fixtures are lying on a plane
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Fig. 8: Process and contact force in a trial of ideal clip fixing.
The DLO firstly establishes contact with the clip (yellow),
pauses until the velocity decreases (gray), then gets inserted
into the clip (pink) and finally remains fixed there (white).

where all δz = 0. For contact MP, we apply fpush = 6 and
select E = 0.75. The results of clip fixing at each fixture are
listed in Table III. For the complete shape control process,
please refer to the accompanying video.

TABLE III: Shape control experiments

U1 (δz =-10mm) C1 (δz =3mm) C3 (δz =5mm) C3 (δz =0mm)
With Success Success Success Success
Without Missed Contact Entry Blockage Entry Blockage Success

VII. CONCLUSION

We introduce a contact state estimation approach for shape
control task of DLOs using small environmental fixtures. Our
method, based on two force-derived indices, one for detecting
contact establishment and the other for identifying abrupt
contact changes, is computationally efficient and ensures
real-time performance. With this contact estimation approach
integrated into the control loop, the shape control framework
is able to detect and correct various failures.

As for future work, we envision further research into
integrating visual observation for more robust contact es-
timation in even more complex DLO manipulation sce-
narios. Additionally, exploring the integration of machine
learning techniques [16]–[18] to enhance the adaptability
and generalizability of our method in dynamic, unstructured
environments holds great promise.
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