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Abstract: Object handover is an essential skill for collaborative robots in both services robotics and
manufacturing scenarios. Most previous works were conducted from the perspective of human-robot
interaction. The object handover between robots for collaborative task execution, aiming at optimizing
time efficiency with human-like smooth behaviour, has not been extensively addressed. In this work,
we propose a skill framework based on variable impedance control and dynamic motion primitives to
optimize not only the motion trajectories and variable impedance, but also the timing of hand actions
during dynamic motion. The effectiveness of the proposed framework is evaluated on a real dual-arm
robot system under two handover scenarios with different constraints on the timing of hand actions. The
experiment results demonstrate significant time efficiency improvement with reduction of the execution
time by 9.4% and 23.7%, compared with accelerating the motion speed of the demonstrated handover.
Furthermore, it can be observed that the robot successfully learned dynamic object handover without
requiring transfer action to be triggered after both hands stop and remain still. In addition, in the second
experiment, it is shown that the object can be transferred even without ensuring firm contact, which
indicates that object handover is possible to be realized by throwing-like motion.

Keywords: Intelligent robotics, autonomous robotic systems, robots manipulators, dynamic movement
primitive, object handover.

1. INTRODUCTION

Object handover is a crucial interaction skill for robots to pro-
vide services in shared environments with humans or perform
tasks collaboratively among robot teams. Increasing research
efforts have been attracted into investigating this open prob-
lem from different perspectives. The field of physical human-
robot interaction (pHRI) aims at achieving safe, reliable and
ergonomic handover of objects between human-to-robot (H2R)
or robot-to-human (R2H). To ensure the safe grasping and pass-
ing of objects, the robot, be it a giver or receiver, must be able
to detect the grasping status of itself or humans (Konstantinova
et al. (2017)), which requires tactile sensors mounted on the
end-effector or estimators using joint torque sensing (De Luca
et al. (2006)). Grip forces (Chan et al. (2012)) and human
mobility (Ardón et al. (2021)) need to be taken into account
when designing handover controllers, as well. Human studies
on handover forces indicate giver-receiver coupling and suggest
designing a handover controller based on the measurement of
the load share (Medina et al. (2016)).

Many works have extensively studied H2R and R2H handovers
as summarized in Ortenzi et al. (2021). One of the recent exam-
ples is the reactive handover controller designed in Costanzo
et al. (2021) through combining a human-to-robot and a robot-
to-human task strategy to prevent slippage. Nevertheless, robot-
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to-robot (R2R) handover is less addressed. In this work, we
aim at developing a method that can generate highly efficient,
generalizable, fast, and natural handover behaviours for robots.
Unlike humans that can hand over objects in a seamless manner,
naı̈vely programmed robots have clear transition phases in a
sequence of actions. Specifically, during the robot’s hand move-
ment, the absence of corresponding smooth arm motion always
results in a stiff and unnatural behaviour. For many multi-robot
collaboration applications which desire to improve production
efficiency, e.g., assembly tasks in robotised factories, equipping
robots with fluid handover skills is of critical importance.

To address this problem, in this work, we propose a framework
that exploits goal-directed dynamic movements and variable
impedance control to enable phase-less and faster handover
motion. Moreover, unlike most works assuming that the object
must be held in the hands throughout the transfer, we allow the
object to be thrown from the giver to the receiver to further
improve the time efficiency. The proposed framework is then
evaluated by physical experiments performed on a dual-arm
robot consisting of two 7-DOF arms. Experimental results
show that the handover task completion time can be reduced
effectively by combined optimization of motion, timing and
impedance shaping. 1

1 The video summarizing the experiments is available via the link: https://
www.youtube.com/watch?v=CT53Oxrusp0
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Fig. 1. Conceptual diagram of dynamic robot-to-robot han-
dover. Shown in the figure are (a) handover programmed
in a conventional sequential manner, and (b) dynamic
handover in which hand actions can be triggered during
motion and variable impedance can be exploited.

2. METHOD

As discussed previously, one of the most important features
of human handover behaviours is that the passing phase often
occurs during motion smoothly without a clear phase transi-
tion. Conventionally, a robot handover consists of two phases,
i.e., the pre-handover phase and the physical exchange phase
(Ortenzi et al. (2021)). The physical exchange phase (object
transferring phase) usually begins after the robots come into
steady states, as depicted in Fig. 1(a). By doing this, the robots
have no way to perform a handover as fluidly and fast as what
can be observed in human movements.

A possible way to generate such behaviour is to represent move-
ment using a dynamical system and exploit its goal-directed
dynamic behaviour. In particular, as illustrated in Fig. 1(b), the
goal positions of both giver and receiver (represented by the
gray circles) can deviate from the original position as in case
(a) so that the hand actions, i.e., grasping and releasing (repre-
sented by the blue and green circles) can be triggered during
the motion. Overall, our framework is designed to address the
following aspects:

(1) The arms and hands motion is highly coupled. The grasp-
ing and releasing motion is allowed to be triggered during
dynamic motion without both the giver and receiver stop-
ping and remaining at zero velocity.

(2) The robots are equipped with compliance skill. In other
words, variable impedance control is used to improve
interaction behaviours.

(3) The execution time of the handover is considered a crucial
optimization goal. Furthermore, the external force and the
robot joint torque are taken into account, as well.

2.1 Variable impedance control

The Franka Emika robot (Haddadin et al. (2022)) is a torque-
controlled 7-DOF robot. On the task level, it can be treated as a
rigid system, since the elasticity at the joint level is handled at
the low-level joint control.
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Fig. 2. Overview of the proposed framework.

The well-known dynamics of a second-order rigid body robot
model with n-DoFs is of the form (Ficuciello et al. (2015)):

M (q) q̈ +C (q, q̇) q̇ + g (q) = τm + τext (1)
where q ∈ Rn is the joint state. M (q) ∈ Rn×n corresponds
to the mass matrix, C (q, q̇) ∈ Rn×n is the Coriolis matrix and
g (q) ∈ Rn is the gravity vector. The motor torque (control
input) and external torque are denoted by τm ∈ Rn and τext ∈
Rn, respectively.

To track a trajectory using Cartesian impedance control, the
well-known control rule (without inertial shaping) introduced
by Albu-Schaffer et al. (2003) is:

τm =JT (q)[KC x̃+DC
˙̃x+MC(q)ẍd+

CC(q, q̇)ẋd] + g(q),
(2)

x̃ =xd − f(q) = xd − x, (3)
ẋ =J(q)q̇ (4)

where KC ∈ R6×6 is the desired stiffness matrix, DC ∈ R6×6

is the damping matrix. The mapping f : Rn → R6 denotes
the forward kinematics. MC(q) and CC(q, q̇) are the inertial
and the Coriolis matrix. J(q) refers to the contact Jacobian.
For variable impedance control, KC and DC represent time
dependent function KC(t) and DC(t).

2.2 Parameterised movement trajectory and stiffness profile

Trajectory Dynamic Movement Primitive (DMP) is widely-
used formalization for encoding trajectories (Ijspeert et al.
(2002), Schaal (2006), Ijspeert et al. (2013)), based on the
idea of modelling movements using dynamical systems. In the
following section, a brief recap of the approach utilized in
our framework is provided. Further details in representing a
Cartesian space movement primitive (MP) can be found in
Ude et al. (2014).

(i) Position DMP:
τ ṗ = z (5)

τ ż = αz(βz(gp − p)− z) + sATfp(s) (6)
τ ṡ = −αss (7)

fpm(s) =

∑N
i=1 ψi(s)∑N
i=1 ψi(s)

wm,i (8)

ψi(s) = exp(− (s− ci)2

2σ2
i

) (9)



where p is the position of the End-Effector (EE). τ > 0 rep-
resents the duration and gp is the goal attractor. The dynamics
of p is regulated by a dynamical system which behaves like a
mass-spring-damper model, with gains determined by αz,βz .
fp(s) is a forcing term manipulating the shape of the trajectory.
It is a function in phase of variable s, whose dynamics makes
it asymptotically converge to 0, in a rate controlled by αs. As
a result, the efficacy of forcing term gradually decays to zero.
This behaviour is purposely designed by Ijspeert et al. (2002,
2013) to enhance convergence of p to the goal position gp.
In addition to s, A is added to the forcing term to scale it
according to the movement distance, where the m-th element
am = gp,m − pm corresponds to m-th forcing element fpm.
From (8) and (9), we can see that the forcing term is defined as
the weighted sum of a set of N basis functions, of which each
is an exponential function defined by centre point ci and width
factor σi.

(ii) Orientation DMP:

τ q̇ =
1

2
η ∗ q (10)

τ η̇ = αz(βz2 log(go ∗ q̄)− η) + sATfo(s) (11)
where the orientation is represented by unit quaternions q =
v + u ∈ S3. go denotes the goal quaternion orientation. The
notion bar denotes the quaternion conjugation, and ∗ denotes
the quaternions product.

Note that, in our framework, both shaping parameter wf and
goal g = [gp, go] can be tuned to adjust the shape of DMP.
However, since in this paper our evaluation focuses on the
handover phase, we intentionally choose only g as policy
parameter for comparative experiments, which will be detailed
later in the section 3.

Stiffness profile The time-varying stiffness profile is repre-
sented via Locally Weighted Regression (LWR), a classic ap-
proach to tackle function approximation problem introduced by
Atkeson et al. (1997). For a LWR consists ofK linear weighted
regression functions, it fits a set of Ak to minimize the weighted
cost function (16) on the dataset X,Y ∈ R1×N .

ϕ̃k(xn) = exp(−1

2
(xn − µk)

TΣ−1
k (xn − µk)) (12)

ϕk(xn) =
ϕ̃k(xn)∑K
i=1 ϕ̃i(xn)

(13)

Wk = diag(ϕk(x1), ϕk(x2), ..., ϕk(xN )) (14)

Ŷ =

K∑
k=1

WkXAk (15)

J = (Y − Ŷ )(Y − Ŷ )T (16)

where µk and Σk are the parameters of the k-th radial basis
functions (RBF) ϕk(xn), and Ŷ refers to the estimated output
of the LWR. In this framework, the stiffness profile is modified
through adjusting the intercepts of the linear regression func-
tions and the RBFs’ centers.

2.3 Policy improvement by evolution strategies

Exploration and evaluation The exploration phase generates
K unconstrained perturbations in policy parameter space for K
roll-outs. These perturbations are assumed to obey the multi-
variate Gaussian distribution ξ̃k ∼ N (ξ,Σϵ), (k = 1, ...,K),

where ξ donates the centre of the distribution and Σϵ indicates
the covariance matrix. Then, the box constraints ξmax and ξmin

are applied while mapping the perturbation ξ̃k to the parameter
vector ξk, which represents the whole policy of the k-th roll-
out.

ξk = min(max(ξ̃k, ξmin), ξmax) (17)
where min and max are evaluated element-wise.

In human-robot handovers, two metrics are used to analyze the
handover’s quality based on the human experience, i.e., objec-
tive task performance metrics and subjective metrics. The task
performance metrics selected by Ortenzi et al. (2021) focus
on the success rate, total handover time, and receiver’s task
completion time; Similarly, the proposed subjective metrics
concern about fluency, trust in the robot, and working alliance.
In a robot-to-robot handover, the metrics used are only objective
task performance metrics due to the absence of human par-
ticipation. Other task performance metrics often used are the
internal wrench norm, which are the forces and torques that
are unnecessary to accomplish the task, and the duration of the
passing phase, which is defined as the time while both agents
share the object’s load (Medina et al. (2016)).

In our framework, the performance of each roll-out is evalu-
ated with the cost function (18), which includes the following
aspects: (i) Task accomplishment: The bool value Φk equals
to 0 for a completed handover and 1 for an unsuccessful trial.
(ii) Speed factor: In the roll-out, the motion of the robot arms
is executed sf times faster than the demonstrated handover.
(iii) Completion time: tref and tk,g represent the demonstrated
giver’s releasing time (reference value) and the real releasing
time of the k-th trial. The giver’s releasing time is leveraged to
mark the end of the handover motion. (iv) External wrench:
Fk,t corresponds to the estimated external wrench, and Fr is
the reference value. (v) Joint torque: τk,t and τr indicate
the internal joint torque and its reference value. The variables
wc, ws, wt, wF and wτ are weighting coefficients, accordingly.
w = [wc, ws, wt, wF , wτ ]

c = [Φk, e
1−sf ,

tk,g
tref

,
∑
||Ftk,t

⊘ Fr||2,
∑
||τtk,t

⊘ τr||2]

Jk = wcT

(18)

where the operator ⊘ donates the element-wise division.

Policy update The policy update steps (19)-(23) are based on
the PIBB algorithm introduced by Stulp and Sigaud (2012).

J̃k =
Jk −min({Jk})

max({Jk})−min({Jk})
(19)

Pk =
exp(−cJ̃k)∑K
i=1 exp(−cJ̃i)

(20)

ξ ←
K∑

k=1

Pkξk (21)

Σtemp
ϵ =

K∑
k=1

Pk(ξk − ξ)(ξk − ξ)T (22)

Σϵ ← Σϵ + γ(Σtemp
ϵ −Σϵ) (23)

First, the cost Jk is normalized according to their maximum and
minimum by (19). The normalized cost J̃k is used to calculate



probability Pk for k-th roll-out according to (20) , where c > 0
is a constant. 2 Then, the distribution is updated, according to
the weighted averaging rule (21)-(23), where γ ∈ (0, 1] is the
applied learning rate while updating the covariance matrix.

Moreover, to achieve faster convergence and improve sample
efficiency, another technique employed is sample reuse. After
every update, the µ best samples among K roll-outs (at current
iteration) are kept for the next update. In other words, from the
second episode, onlyK−µ perturbations are generated in each
sampling phase. The exploration, evaluation and policy update
procedures are repeated until ξ converges or the system reaches
maximum updates number Nmax.

The above-mentioned policy updating algorithm has the struc-
ture of PI2 (Stulp and Sigaud (2013)), but uses covariance ma-
trix adaptation as found in the CMA-ES algorithm (Hansen and
Ostermeier (2001)). It only uses the total reward received dur-
ing the execution. Correspondingly, this policy improvement
method is converted into a Black-Box Optimization (BBO)
method and is proofed as a special case of CMA-ES by Stulp
and Sigaud (2012).

2.4 Policy parameters

Before ending this section, a summary is provided and illus-
trated in Fig. 2:

(1) A variable impedance controller is utilized to track the
trajectory with time-varying stiffness profile KC(t) in
Cartesian space.

(2) The reference trajectory MP is symbolized with DMP,
whose goal position is tuned as a policy parameter.

(3) The time-varying stiffness profile KC(t) is represented
with a parameterized LWR.

(4) The time-related variables are also taken as policy param-
eters, including time for the receiver to grasp tr, giver’s
releasing time tg , and speed factor sf for adjusting the
overall trajectory execution.

(5) With the encoding rule introduced in section 3.2, a demon-
strated handover is represented as a parameter vector ξ.
Vice versa, a parameter vector sampled from the distri-
bution can be decoded into a set of continuous control
commands for the robot to perform handover roll-out.

3. EXPERIMENTS

3.1 Experiment setup

As illustrated in Fig. 3, the experiment setup used in this
paper is a dual-arm robot, that consists of two 7-DoF Franka
Emika robots (Haddadin et al. (2022)). It is developed based
on the humanoid robot GARMI (Tröbinger et al. (2021)). At
each wrist of the robot, a qb-SoftHand (an anthropomorphic
compliant robotic hand) is equipped as end-effector. Due to its
well-designed transmission system, it can adapt to the grasped
object shape with only one tendon and one motor (Bonilla et al.
(2016), Catalano et al. (2014))). As for the software, the robots
are controlled based on the Franka Control Interface (FCI) at 1
kHz and the hands’ control commands are sent via the RS-485
serial communication interface. The developed control software
runs on a computer (Intel Core i5-12600K CPU @ 4.50GHz)
installed with Ubuntu 20.04 LTS and real-time kernel.
2 In our implementation we choose c = 10.
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Fig. 3. Overview of experiment setup

3.2 Experiment design

To evaluate the effectiveness of the proposed method while
completing the robot-to-robot handover task, experiments are
designed based on the dual-arm robot mentioned in the section
3.1. During the experiment, the dual-arm robot learns to hand
over an engineer’s hammer from the right hand to its left hand
with the proposed framework.

For each robot arm, the pose sequence of end-effector is fitted
with DMP, which contains 10 radial basis function networks
(RBFNs). Since we want to keep the shape of the trajectory, for
each robot, only 7 parameters are picked to indicate its goal g
of the DMP; In order to compress the dimension of parameter
space, the Cartesian stiffness matrix of each robot is simplified
as a diagonal matrix with [Kp,Kp,Kp,Ko,Ko,Ko] as the
diagonal elements. The Kp and Ko are fitted with the function
approximator LWR based on the software package DMPBBO
(Stulp and Raiola (2019)), respectively. Each approximator
consists of 3 basis linear regression functions. The shape of
the stiffness profile is modified by tuning the center of the
basis functions and offsets of the linear regression functions.
Consequently, 12 parameters are utilized to encode the stiffness
profile of each robot arm; In addition, 3 extra parameters related
to the time are required, in order to depict the movement time
point of the hands and the speed factor of the trajectory (a
factor to regulate the overall motion speed). As a result, the
whole handover policy is represented by a parameter vector
ξ with 41 elements. Moreover, the demonstration is preserved
and accelerated to work as the baseline while evaluating the
performance of the learnt skills, as well.

As for the robot hands’ motion, we designed two strategies to
achieve dynamic handover behaviour. S1: To guarantee safe-
ness and robustness during the handover, the giver is only
allowed to release the object after the object is fully grabbed
by the receiver. Therefore, a constraint (tg ⩾ tr + ∆th) is
applied while generating samples of timing parameters; S2: On
the contrary, here we remove the constraint on the timing of the
hand motion tr, tg to make it possible for the robot to employ a
throwing-like motion for object handover.



Table 1. Parameters used during the experiments.

Property Unit Value
tr, tg (Demo) s 6.834, 7.639
∆th s 0.5
Kp,Ko (Demo) N/m 1000, 100
wc, ws, wt, wF , wτ - 0.35, 0.1, 0.3, 0.2, 0.05
Nmax,K, µ - 20, 12, 2
γ - 0.8

Based on the designed strategies, two groups of experiments are
implemented with the same initial conditions. Both experiments
share the same initial parameter vectors that are generated from
the demonstration. Through fitting the demonstrated trajectory
with DMP, the shaping parameters and initial goal g of the
DMP are obtained. As for the parameters related to the stiff-
ness profile, they are obtained by representing the Kp and Ko

with LWR. The initial receiver’s grasping time tr and giver’s
releasing time tg are the same as the demonstrated handover.
The initialization parameters used in the experiments are sum-
marized in Table 1.

4. RESULTS

According to the designed strategy, the policy based on the
strategy S1 meets the convergence criteria 3 after 7 iterations
and that based on S2 converges after 8 updates. Then, the final
policy is performed on the dual-arm and the recorded motion
trajectories and measured external forces are used for evalua-
tion. To evaluate the proposed framework more objectively and
fairly, the demonstrated handover is accelerated and added to
the comparison group. The original demonstrated trajectory is
accelerated to the same speed as that of the policy obtained with
strategy S1. As soon as the robot arm reaches the handover
position, it triggers the grasping action of the receiver. Then,
the giver releases the object after the receiver fully grasps it.
The accelerated demonstration (Base) is treated as a baseline in
the following comparison.

As depicted in Fig. 4, compared to the human demonstrated
handover, not only the skill obtained through accelerating the
demonstrated trajectory, but also the skills learnt with both
proposed strategies have achieved a significant improvement.
However, only the policies realized with our proposed frame-
work can handover the object in a dynamic manner. In the
following paragraphs, the concrete results will be detailed.

Table 2. Experiment results

ttotal(s) tr(s) tg(s) costtotal costwrench

Demonstration 9.604 6.834 7.639 0.65 0.2
Base 3.876 2,288 3.076 0.3946 0.1759
S1 3.511 1.711 2.336 0.3988 0.1814
S2 2.957 0.957 1.088 0.3559 0.2007

Time As indicated in Table 2, the original demonstrated
handover lasts almost 10 s; In contrast, the skill based on the
strategy S1 accelerates this value to 3.5 s; For the baseline, al-
though the movement of the demonstrated trajectory is speeded
up to the same level, the overall execution time is dragged
down by the releasing motion. (For the robotic hand used in
the experiment, it takes around 0.8 s to fully deploy the palm);

3 The policy is converged when the range of the cost for roll-outs in an episode
is smaller than 0.03.
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Fig. 4. Overview of the experiment results.

The fastest handover is achieved by the skill based on S2, which
accomplishes the whole handover process within 3 s.

Moreover, as depicted in Fig. 5, the learnt skills couple the
motion of the robot hands and arms effectively and accomplish
the handover task faster. For the demonstrated handover, there
are two main drawbacks. On the one hand, the motions of
the robot arms and hands are not fully decoupled. The robot
arms are nearly still when hand motions are triggered. On the
other hand, there is an obvious time gap (0.805 s) between
the motions of two hands, i.e., the giver begins to release
the object after the object is fully grasped; For the baseline,
although a shorter completion time is obtained by performing
arm movements at a faster rate, the flaws in the demonstration
are not effectively eliminated. In contrast, the skill based on
the strategy S1 treats the hands and robot arms as a unity. The
receiver begins to grasp the object during the movement of the
robot arms, and the gap between the hand motions is narrowed
to 0.625 s; For the skill learnt with S2, the system makes full
use of the object’s inertia. The grasping and releasing motions
happen when robots operate at a relatively high speed and the
grasping and releasing happen almost at the same time (with a
0.131 s gap). As a result, the transferred hammer is in a “flight”
state, as illustrated in Fig. 6. During the object transfer process
(subfigures a to f ), there is an apparent rotation of the hammer,
which dues to the combined effect of the hammer’s gravity,
inertia and the physical interaction between the robot hands.

External force Fig. 7 indicates the estimated external force
at the wrist of each robot, and the stiffness configuration when
grasping and releasing is marked out on the graph. From top to
bottom, the figures represent the external force of the demon-
strated handover, the compare baseline (accelerated demonstra-
tion), S1 based policy and S2 based policy, in turn. Compared
to the original demonstration, the curves of the other three
skills all show significant jitter at the beginning phase, which
is caused by the higher acceleration. In addition, the shape
and peak of the external force curves of the demonstration,
baseline and skill S1 are quite similar. In contrast, for the skill
acquired with S2, the load transfer from the giver to the receiver
exhibits distinct behavior in the force graph. Compared to the
other handover skills, the hammer is in a ”flight” state in this
process. As a result, the giver’s maximum force only drops by
around 11%, and the receiver’s maximum force increases by
8% because of the dynamic impact of the transferred hammer.
(The hammer weighs 0.3 kg).

In brief, both strategies based on the proposed framework have
improved the handover performance considerably and achieved
corresponding forward-looking results. They both enhanced the
efficiency with a dynamic handover, under the premise of lim-
iting interaction force. By constraining the hand motion timing,
the policy trained with strategy S1 obtained a solid grasping.
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Fig. 6. Object transfer process of the policy learnt with strategy
S2. The pose of the hammer head is marked with a red
rectangle.

The pose of the handover object has a good certainty, and
the external force during the handover is effectively lessened;
While, for the unrestricted strategy S2, the robot made full use
of the object’s inertia and achieved a faster performance. As
a side-effect, the receiver suffered from a slightly increased
impact.

5. CONCLUSIONS

This paper proposed a novel framework to formulate the dy-
namic handover skill based on DMPs and variable impedance
control, in which the movement trajectories, stiffness profiles,
and timing of hand actions are optimized towards smooth and
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fast handover behaviour. The effectiveness of the proposed
framework was validated on a dual-arm experiment setup in two
scenarios, i.e., one focuses on a safe and robust performance,
and the other allows the robot to exploit hand motion timing
fully. In both cases, the robot successfully learned dynamic
handover skill which significantly speeded up the handover
motion compared to the baseline (accelerated demonstration).
The learnt skill demonstrated effective coupled timing of the
hand actions and arm movements in dynamic motion. Further-
more, the latter case used for experimental evaluation showed
that the object is possible to be transferred in a ”flight” state
without ensuring contact with the hands during handover phase.
This implies that the object handover can be realized by using
throwing-like motion, and worth more research efforts into
extending the current framework to incorporate more highly-
dynamic movements. In future works, the robot-to-robot han-
dover skill will be trained using more object types to achieve
better generalization ability and verified in human-to-robot and
robot-to-human scenarios. We will also explore reinforcement
learning algorithms to learn handover skills (Bing et al. (2023)).
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Tröbinger, M., Jähne, C., Qu, Z., Elsner, J., Reindl, A., Getz,
S., Goll, T., Loinger, B., Loibl, T., Kugler, C., et al. (2021).
Introducing garmi-a service robotics platform to support the
elderly at home: Design philosophy, system overview and
first results. IEEE Robotics and Automation Letters, 6(3),
5857–5864.

Ude, A., Nemec, B., Petrić, T., and Morimoto, J. (2014). Ori-
entation in cartesian space dynamic movement primitives.
In 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2997–3004. IEEE.


