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Abstract— Insertion is an essential skill for robots in both
modern manufacturing and services robotics. In our previous
study, we proposed an insertion skill framework based on force-
domain wiggle motion. The main limitation of this method
lies in the robot’s inability to adjust its behavior according
to changing contact state during interaction. In this paper,
we extend the skill formalism by incorporating a behavior
tree-based primitive switching mechanism that leverages high-
frequency tactile data for the estimation of contact state. The
efficacy of our proposed framework is validated with a series
of experiments that involve the execution of tightly constrained
peg-in-hole tasks. The experiment results demonstrate a signifi-
cant improvement in performance, characterized by reduced ex-
ecution time, heightened robustness, and superior adaptability
when confronted with unknown tasks. Moreover, in the context
of transfer learning, our paper provides empirical evidence
indicating that the proposed skill framework contributes to
enhanced transferability across distinct operational contexts
and tasks.

I. INTRODUCTION

Since the early stage of automatons and industrial robots,
manufacturing has been one of the most important sectors
motivating and witnessing the evolution of robotics [1].
Transitioning from Industry 4.0 to Industry 5.0 [2], robotic
assembly meets challenges from flexible manufacturing’s
rise, requiring efficient small batch production management
in automated factories. This brings the research focus from
implementing robots on repetitive tedious tasks, be it simple
pick-and-place, or welding, grinding, assembly, in a struc-
tured environment to an unstructured dynamic environment,
even with humans in their vicinity to collaborate. Central
to this problem is how to develop versatile robot skills that
are adaptable to new task requirements with minimal human
intervention and reprogramming.

Among many skills for contact-rich manipulation, Inser-
tion, also known as Peg-in-Hole (as depicted in Fig. 1)
is of paramount importance and has received numerous
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Fig. 1: Experiment setup for Tactile Insertion. The left
figure shows the overall setup. Objects used in this work
are: (a) Object A: a cuboid with the geometry size of
35mm × 25mm × 60mm, clearance is 0.1mm in each
dimension, (b) Object B: a cylinder length of 50mm and
diameter of 40mm, clearance is 0.05mm, (c) Object C:
a cylinder with length of 50mm and diameter of 30mm,
clearance is 0.025mm, (d) Object D: a 37mm long key.

research efforts recently [3]–[19]. Admittedly, a myriad of
recent works [3]–[10], [14]–[19] take the learning-based
approach in contrast to those exploiting human expert
knowledge to handcraft solutions [11]–[13]. The learning-
based methods span three main categories: (i) end-to-end
(deep) reinforcement learning (RL), whether taking force
signals [5], [7], [16] or visuo-tactile sensing [9], [15] into
model inputs; (ii) imitation learning or learning from demon-
stration (LfD) [3], [4], [6], [17]; and (iii) parameterized skill
learning [8], [10]. In the line of deep RL, training a general
model with meta-reinforcement learning [14], [18], [20], [21]
seems promising to acquire highly versatile and transferable
insertion skills. Nevertheless, the lack of sample efficiency,
safety guarantees and interpretability are imperatives to its
real-world deployment. Imitation learning as a more sample-
efficient approach has been adopted widely in industrial
applications, combined with RL to further optimize control
policies. However, learning skills constrained by changing
environments as well as capable of real-time adaptation based
on tactile information is still an open problem.

Compared to learning-based methods, off-the-shelf solu-
tions [22] programmed by human experts are still more
widely used in real manufacturing, which has well-structured
environments but requires high precision manipulation. They
often outperform learning-based methods in certain as-
pects [19]. In the context of robotic insertion, most pop-
ular approaches [11]–[13] usually feature force-based spiral
search strategies and a skill framework consisting of multiple
phases or primitives. Multi-phase skill formalism is also used
in [8], [10] with a force-based spiral search primitive termed
as “Wiggle” motion, which enables learning in reduced
parameter space, resulting in much higher sample efficiency
compared to deep RL approaches.

The successful use of spiral force search as demonstrated
in [13] replies on the use of active compliance, which



resonates with the old idea of adapting to physical in-
teraction rather than overcoming it, first implemented by
McCallion et al. [23] in a physical compliance device for
an industrial insertion task. However, most previous works
focus only on searching (approximately) optimal solutions,
either by learning or human programming, to solve the
hole searching problem. The effectiveness, performance and
transferability of the insertion skill, in terms of adapting to
physical interaction (in the presence of imperfect perception
and changing environment constraints) during the process
when the peg is being pushed into the hole, remains an under-
explored question. This is in part due to the fact that tight-
clearance industrial assembly tasks [5] are rarely investigated
in the research community. On the contrary, many studies are
conducted with “generous” clearance tasks, which inevitably
biases on hole searching and mitigates the importance of
adaptability and failure recovering during the whole process
of insertion.

In our previous works [8], [19], we demonstrated the
feasibility of replicating human-like wiggling with feed-
forward force in robotic insertion tasks. However, this ap-
proach is still far from achieving human performance in
terms of real-time adaptability when conducting new tasks.
This is due to the fact that humans know when and how
to adjust motion strategies to adapt to unknown physical
constraints, rather than indiscriminately applying force. To
address this problem, in this paper, we propose to extend
the skill framework with a Behavior Tree (BT) [24] based
primitive switching mechanism, which uses high-frequency
tactile information for contact state estimation.

The contributions of this work can be summarized as
follows:

1) Real-time contact state estimator: We introduce a real-
time contact state estimator for insertion tasks, leverag-
ing time series anomaly detection and tactile informa-
tion.

2) Real-time behavior tree: We incorporate this contact
state estimator into our existing insertion skill, revamp-
ing it using a behavior tree framework operating at a 1
kHz frequency.

3) Experimental validation: We assess the performance of
the proposed method by comparing it to our previous
approach across various insertion tasks, demonstrating
its strong efficacy and showing evidence that it can im-
prove learning efficiency in terms of robustness and skill
performance. With the new skill framework, execution
time of final learned skill on our tested objects is almost
halved (roughly 50% reduction).

4) Transferability test: We showcase that the proposed
method surpasses our previous work with a significantly
enhanced transferability, i.e., a clearly higher success
rate in zero-shot transfers and a more rapid, robust
convergence during fine-tuning.

II. METHODS

A. Adaptive Impedance control with Feed-forward Force

Consider a torque-controlled robot with n-Degrees of
Freedom, the second-order rigid body dynamics is written
as:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm + τext (1)

where q ∈ Rn is the joint position. M(q) ∈ Rn×n

corresponds to the mass matrix, C(q, q̇) ∈ Rn×n is the
Coriolis matrix and g(q) ∈ Rn is the gravity vector. The
motor torque (control input) and external torque are denoted
by τm ∈ Rn and τext ∈ Rn, respectively. The adaptive
impedance control law with feed-forward force profile is
defined as [25]:

τm(t) =J(q)T[Fff (t) +K(t)e+Dė

+M(q)ẍd +C(q, q̇)ẋd] + g(q),
(2)

where Fff (t) compensates the feed-forward wrench, while
xd is the desired trajectory. e = xd − x and ė = ẋd − ẋ
are the position and velocity error, respectively. K(t) and D
are stiffness and damping matrices in Cartesian space. J(q)
represents the robot Jacobian matrix. This control law is used
in all motion primitives in the skill framework, which will
be introduced below.
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Fig. 2: Skill Overview. The upper block depicts our previous
skill [8] formalism structured as a Finite State Machine,
while the lower one shows the new proposed skill with a
Behavior Tree structure. The yellow nodes represent condi-
tion nodes, while the green ones indicate action nodes.

B. Insertion Skill Design

In contrast to [8], as shown in Fig. 2, the architecture
of the skill framework proposed in this paper shifts from a
sequential Finite State Machine to a Behavior Tree of depth
5, which iterates at 1 kHz frequency to decide which type of
actions is executed based on real-time contact state estima-
tion. Every 1ms an enabling signal is fired out from the Root
node to its leaf nodes. These triggering signals, also called
“ticks”, traverse recursively in the tree following the Depth
First Search rule. The continual generation of ticks and their
tree traversal result in a closed loop execution. Actions are
executed and aborted according to the ticks’ traversal, which
depends on the leaf nodes’ return statuses [24].



From the beginning of the task, the robot gripper moves
from its initial position towards the hole until contact es-
tablished. In this Pre-insertion phase only Approach and
Contact primitives are used, and their action nodes are
almost surely executed in sequence by applying the control
law Eq. (2) with Fff (t) = 0 to follow the desired trajectory
xd.

After establishing contact, the tick in BT traverses through
the Repeat node at Depth 3, which triggers its left child
node to estimate contact state (see Sec. II-C.3 below) and
evaluate how the peg is aligned with the hole. If the condition
“Aligned == Yes” is fulfilled, the fallback node returns suc-
cess and its sibling node, the Push action node, is executed,
whereas Wiggle is executed whenever the estimation of the
alignment returns false. Wiggle and Push are implemented
based on the control law Eq. (2). In Wiggle, Fff (t) follows a
designed trajectory from motion generator; In Push, Fff (t)
maintains the last updated value.

In our previous works [8], [19], the Lissajous curve-
shaped feed-forward force Fff (t) is leveraged to mimic the
human’s periodic wiggle motion. The desired force trajectory
in direction i is formulated as:

Fff,i(t) = ai · sin(2πfit+ φi) (3)

where ai, fi and φi refer to the amplitude, frequency and
phase, respectively. The subscript i refers to the direction in
the range x, y, rx, ry, rz of the End-Effector (EE) frame. The
applied force in the z direction (main assembly direction)
maintains a constant value az .

The feasibility and efficiency of applying feed-forward
force to mimic the human’s wiggle motion in a robotic
insertion task have been demonstrated in [8], [19]. The
advantages are twofold: On the one hand, it can search and
align the hole before inserting the peg; On the other hand,
during the Insertion phase, wiggling effectively help the peg
get out of a stuck state.

However, by further observing how humans perform inser-
tion tasks on tight-clearance objects, humans tend to employ
wiggling motions only when necessary, which coincides
to the minimum intervention principle (in a loose sense).
From the perspective of energy, the optimal solution while
achieving task goal during tight-tolerance insertion, should
exert minimal energy to overcome friction and recover from
anomaly, i.e., the peg getting stuck due to misalignment
with physical constraints. Moreover, humans have remark-
able ability to generalize their manipulation skills to unseen
new tasks without new training. For instance, given a new
difficult tight-clearance peg-in-hole task, many people would
naturally utilize force spiral search or wiggle motion for
contact alignment and failure recovering during insertion. In
other words, humans can intentionally self-adapt tactile skill
to tackle complex novel tasks. In philosophical terminology,
this intentional self-adaptability exemplifies a meta-agentive
capability, that intervenes in and influences other agentive
processes.

Based on the above observation and reasoning, we pos-
tulate that “mimicking” such meta-agentive ability is the
key to realize robot skills that are highly transferable to
new tasks with various environment constraints. Without
over-complicating the problem by taking less interpretable

Algorithm 1 Real-time Contact State Estimation

z ← 0, s← Searching ▷ initial
record current xz as xz0

for any new data xz do
if s == Searching then

if xz − xz0 > ϵ then
s← Stuck ▷ searching success
z ← z(xz)

end if
else

z ← z(xz)
if s == Stuck & z > 3 then

s← Unstuck ▷ Stuck to Unstuck
if fresz is local maximum then

s← Aligned & vref ← αv ▷ alignment
end if

else if s ̸= Stuck & v < vref then
s← Stuck ▷ get stuck

end if
end if
add xz into z-score detection buffer

end for

meta-RL approach, in this paper we propose to incorporate
human knowledge into skill framework by designing a simple
yet effective behavior tree-based skill formalism to achieve
dynamic and reactive self-adaptable behavior in insertion
skills.

C. Real-time Contact State Estimation
1) data pre-processing: To mitigate the impact of high-

frequency noises, the robot states series X is filtered by
convolution with a Blackman window [26], [27]:

w[n] = 0.42− 0.5 · cos
(
2π

n

N

)
+ 0.08 · cos

(
4π

n

N

)
(4)

w[n] =
w[n]∑N
i=1 w[i]

(5)

X̃ = X ∗w (6)

where w[n] is the n-th element in a Blackman window of
length N = 50. X and X̃ refer to the measured and filtered
time series, respectively.

2) moving z-score based “Unstuck” state detection: The
moving z-score is a commonly employed methodology for
quantifying the degree of anomaly exhibited by individual
data points within a time series [28]. Applying it to xz (the
z-position of the EE’s frame w.r.t. the task frame), the z-score
value of the new coming measured point is:

z =
xz − µ

σ
(7)

where the mean µ and standard deviation σ are calculated
over the previous observations.1 Grounded in the concept of
statistical dispersion, if the z-score associated with a newly
acquired sample surpasses three, it warrants classification
as an anomalous data point, with a confidence level of
97.7%. As illustrated in the third row of Fig. 3, the EE’s

1In this work, measurements from the last 1 second are used as reference.



z-position in the initial searching phase and when the object
is stuck closely approximates a horizontal line. As the
object transitions from a stuck state to becoming unstuck,
it undergoes a rapid upward elevation. This turning point
can be effectively captured via anomaly detection.

3) contact state estimation: As depicted in algorithm 1,
the contact estimation may output different candidate states,
i.e., “Searching” indicates the robot is in the process of
locating the hole; “Stuck” means the insertion object gets
stuck; “Unstuck” represents the object is moving along the
insertion direction and “Aligned” signs that the object is
currently aligned with the insertion hole. Due to the existence
of clearance, a misaligned object may also move in the
insertion direction with a pressing force. For such kind of
object, sequenced wiggle motion helps it get closer to the
perfect aligned pose. Compared to a misaligned object, an
aligned object experiences less resistance under the same
conditions. Therefore, our contact detector estimates the
alignment moment by identifying the local maximum of
fresz , namely the resistance force Fres in the z-direction.

[F T
r , τT

r ]
T = J−T

body(τm −C (q, q̇) q̇ − g (q) ) (8)

Fres = Fr − Fext (9)

where Fr and τr refer to the force and torque exerted by
the robot on the insertion object. Jbody represents the body
Jacobian, relating joint velocities to the EE twist expressed
in the body frame (a frame at the EE). Fext indicates the
estimated external force based on the joint torques.

As the fresz reaches a local minimum, the corresponding
velocity in the z-direction is multiplied by a discount factor
(α = 0.1) to generate a reference speed. When the object’s
velocity drops below this threshold, the system state is re-
evaluated as “Stuck”.

D. Evolution Strategy based Learning Algorithm

1) Exploration and evaluation: The exploration phase
generates K unconstrained perturbations in skill parameter
space for K roll-outs. These perturbations are assumed to
obey the multi-variate Gaussian distribution ξ̃k ∼ N (ξ,Σϵ),
where k = 1, 2, ...,K and ξ indicates the centre of the
distribution and Σϵ indicates the covariance matrix. Then,
the box constraints ξmax and ξmin are applied while mapping
the perturbation ξ̃k to the parameter vector ξk (detailed
in [8]), which represents the whole policy of the k-th roll-out.

ξk = min(max(ξ̃k, ξmin), ξmax) (10)

where min and max are evaluated element-wise. The per-
formance of each roll-out is evaluated with the cost function:

J =
texe
tmax

+ Φ · ed (11)

It includes the following aspects: (i) Execution time: texe
and tmax represent the execution time and time limitation;
(ii) Task accomplishment: The Boolean value Φ equals to 0
for a completed handover and 1 for an unsuccessful trial; and
(iii) Average distance: The average distance d between the
EE and insertion hole indicates the quality of an unsuccessful
sample. The larger the value, the further it deviates from a
successful trial, vice versa.

2) Policy update: The policy update steps (12)-(16) are
based on the PIBB algorithm introduced by [29].

J̃k =
Jk −min({Jk})

max({Jk})−min({Jk})
(12)

Pk =
exp

(
−cJ̃k

)
∑K

i=1 exp
(
−cJ̃i

) (13)

ξ ←
K∑

k=1

Pkξk (14)

Σtemp
ϵ =

K∑
k=1

Pk(ξk − ξ)(ξk − ξ)T (15)

Σϵ ← Σϵ + γ(Σtemp
ϵ −Σϵ) (16)

First, the cost Jk is normalized according to their maximum
and minimum by (12). The normalized cost J̃k is used to
calculate probability Pk for k-th roll-out according to (13),
where c > 0 is a constant. Then, the distribution is updated,
according to the weighted averaging rule (14)-(16), where
γ ∈ (0, 1] is the applied decate factor while updating the
covariance matrix.2

III. EXPERIMENT

To evaluate our proposed method, we designed three ex-
periments to: (i) demonstrate the performance improvement
of our proposed skill framework with behavior tree and con-
tact state estimation over that without them, (ii) validate the
learning performance, and (iii) investigate the transferability.
The original skill without behavior tree and state estimation
is utilized as our comparing baseline. The experiments are
implemented with a 7-DoF franka robot [30] and 4 tight-
clearance insertion objects, as illustrated in Fig. 1.

A. Skill Performance

To validate the efficiency of our proposed method, we
conducted a series of insertion tasks with our proposed
methods and compared them against the baseline. These
tasks were carried out using Object A, and the process
was repeated 100 times with different parameters. These
parameters are sampled from a Gaussian distribution, gen-
erated based on successful samples obtained when using
the baseline executing various insertion tasks. The results
indicate: (i) Our proposed method achieves a significantly
improved success rate of 30%, whereas the original skill
yields a success rate of 21%. (ii) For completed trials, an
8.9% reduction in overall execution time is observed.

TABLE I: Parameters value

Parameter Value
Kxyz [N/m] 523.907
Kr [N/rad] 24.984
[ax, ay , az ] [N] [1.792, 2.360, 4.931]
[arx, ary , arz ] [N/rad] [0.766, 0.906, 3.228]
[φx, φy ] [-0.078, 0.776]
[φrx, φry , φrz ] [-1.562, 0.610, -0.119]
[fx, fy ] [2.179, 1.561]
[frx, fry , frz ] [0.718, 0.720, 0.143]

2In this work, c = 10 and γ = 0.9.



Fig. 3: Skill performance. The figures on the left correspond to the insertion with baseline, whereas the right figures
demonstrate the insertion with our proposed method. Both of them are conducted with identical parameters (detailed in
Table I). In these figures, specific time points are marked for reference: T1 signifies the moment when the object transitions
from a Stuck to an Unstuck state; T2 represents the time point when the object is estimated in an Align state; T3 denotes
the complication time of our proposed method (the end time in the right subgroups).
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Fig. 4: Learning performance. (a) learning curve of Object A, (b) measured external force, torque and execution time of
final result on Object A, (c) learning curve of Object C, (d) measured external force, torque and execution time of final
result on Object C.

To gain a comprehensive understanding of the influence of
the behavior tree and contact state detection on the Insertion
phase, the results executed with the parameters in Table I are
visualized in Fig. 3 (The parameters’ meaning is detailed in
[8]). The figures in the first two rows depict the estimated
wrench Fr and τr exerted on the object by the robot.
Additionally, the green line represents the external force
exerted on the object by the environment. The corresponding
position and speed of the EE in z-axis are illustrated in the
last two rows, respectively. Note that, all the measurements
in this figure are the pre-processed with Eq. (6).

In the initial stage (before T2), the performance of both
skills exhibits significant similarities. At the moment T1, our
proposed contact estimator detects a critical event: The object
successfully transitions from a Stuck to an Unstuck state
after locating the insertion hole. Following this, at T2, our
proposed method stops its wiggle motion when it meets an
optimally aligned gesture, identified as a local maximum of
the resultant force fresz . Subsequently, the robot transitions
its action mode to pushing with a constant feed-forward force
and accomplishes the task at time T3; In contrast, the baseline
keeps wiggling naively after T2 and misses the achieved



aligned position, resulting in a prolonged execution time.

B. Learning Performance
In this section, we employ the evolutionary strategy de-

tailed in Section II to train the robot solving insertion task,
utilizing the Object A and Object C, as depicted in Fig. 1,
respectively. Each training process is repeated 10 times. The
costs during the training process are presented in the left part
of Fig. 4. The red line represents the mean of the training
processes based on the baseline, while the blue line indicates
that of our proposed method. The shadow area represents
the corresponding variance. Additionally, a horizontal dashed
line shows the boundary to distinguish between successful
and unsuccessful trials. Evaluating the overall performance
of the Pre-Insertion and Insertion phases with Eq. (11),
the proposed method demonstrates a modest improvement,
characterized by reduced cost and variance. However, it is
worth highlighting that the Pre-Insertion phase is identical
for both methods, with the sole distinction arising during
the Insertion phase. Therefore, the right-hand figures provide
a detailed analysis of the Insertion phase, demonstrating
a marked improvement in execution speed while ensuring
effective limiting of the contact force. Specifically, the aver-
age execution speeds for the tasks improved by 52.9% and
45.6%, respectively.

C. Transferability
In this section, we assess the transferability of our method

by examining its zero-shot transfer and fine-tuning perfor-
mances.

1) zero-shot transfer: We apply the policies (skills with
optimal parameters) learned from Object A to tasks for
which it was not explicitly trained, i.e., the insertion of
Objects B, C, and D. This procedure is executed 100 times
using the policies derived from both methods (in Sec. III-
B). The results are depicted in Fig. 5. For each object, the
policy derived from our proposed method, represented in
blue, consistently demonstrates significantly higher success
rates in comparison to the baseline method, depicted in red,
resulting in an overall enhancement in the success rate by
22.7%.
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Fig. 5: Success rate while transferring the models learned
with Object A to the other objects shown in Fig.1.

2) fine-tuning: Subsequently, we utilize the policies de-
veloped for Object A as pre-trained models and proceed to
fine-tune them for the insertion tasks involving Objects B,
C, and D. As depicted in Fig. 6, our method demonstrates
notable efficiency and robustness improvements. Specifically,
for Object B, our approach not only converges 33.3% faster
than the baseline but also exhibits a 49.4% reduction in
performance’s variance. Regarding Object C, our approach

consistently outperforms the baseline throughout the learning
process. Notably, for Object D (characterized by its unique
type and complex geometry), our method reaches conver-
gence 1.7 times quicker than the baseline, with a notable
66.2% reduction in outcome variance. These experimental
outcomes affirm the superior transferability of our newly
proposed skill framework, primarily due to the improved
self-adaptability by the integration of contact state estimator
and the BT structure.
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Fig. 6: Fine-tuning performances. Shown in figure are:
(a) Object B, (b) Object C, and (c) Object D. The experiment
is conducted five times, with the solid line depicting the mean
values and the shaded area indicating the variance.

IV. CONCLUSION

This paper enhanced our precious framework by incor-
porating behavior tree and contact state estimation. The
efficiency of our proposed framework has been validated
with various tight-clearance insertion tasks. The experiment
results showcased a substantial improvement with reduced
execution time while ensuring controlled contact forces. Ad-
ditionally, it demonstrated enhanced robustness and superior
performance when learning unknown tasks. Furthermore, the
transfer learning experiment implies that our extended skill
framework can effectively enhance the skill transferability,
by improving the model’s self-adaptability through the pro-
posed contact state estimator and 1 kHz BT structure. In
future works, we will conduct extensive empirical research
on investigating skill transfer learning involving a wider
range of objects.
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